
UCRL-CONF-235293

Software Engineering Processes Used to
Develop the NIF Integrated Computer
Control System

A. P. Ludwigsen, R. W. Carey, R. D. Demaret, L.
J. Lagin, U. P. Reddi, P. J. Van Arsdall

October 4, 2007

International Conference on Accelerator and Large
Experimental Physics Control Systems
Knoxville, TN, United States
October 14, 2007 through October 20, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

SOFTWARE ENGINEERING PROCESSES USED TO DEVELOP
THE NIF INTEGRATED COMPUTER CONTROL SYSTEM*

A. P. Ludwigsen#, R. W. Carey, R. D. Demaret, L. J. Lagin, U. P. Reddi, P. J. Van Arsdall
LLNL, Livermore, CA 94551-0808, U.S.A.

Abstract
 The National Ignition Facility (NIF) at Lawrence

Livermore National Laboratory is a 192-beam laser
facility for high-energy density physics experiments. NIF
is operated by the Integrated Computer Control System
(ICCS), which is comprised of 60,000 devices deployed
on 850 computers. Software is constructed from an
object-oriented framework based on CORBA distribution.
ICCS is 85% complete with over 1.5 million lines of
verified code now deployed online. Success of this large-
scale project was keyed to early adoption of rigorous
software engineering practices including architecture,
code design, configuration management, product
integration, and formal verification testing. Verification
testing is performed in a dedicated test facility following
developer integration. These processes are augmented by
an overarching quality assurance program featuring
assessment of quality metrics and corrective actions.
Engineering processes are formally documented and
releases are managed by a change control board. This talk
discusses software engineering and results obtained for
the NIF control system.

INTRODUCTION
NIF will be the world’s largest and most energetic laser

experimental system, providing a scientific center to study
inertial confinement fusion (ICF) and matter at extreme
energy densities and pressures. NIF’s laser beams are
designed to compress fusion targets to conditions required
for thermonuclear burn, liberating more energy than
required to initiate the fusion reactions. NIF is comprised
of 24 independent bundles of 8 beams each using laser
hardware containing 60,000 control and diagnostic points.

NIF is operated by the large-scale Integrated Computer
Control System (ICCS) in an architecture partitioned by
bundle and distributed among over 850 front-end
processors and supervisory servers. The primary
requirement for the control system on this facility is to
automatically fire and diagnose laser shots every four
hours. This process begins with reading campaign goals
from the laser physics model and deriving equipment
settings based on the goals. Laser alignment is then
automatically performed, including wavefront correction.
Equipment is then configured to the derived settings to
meet the laser performance and diagnostic goals. Shot
countdowns are performed to verify the derived settings
by firing the pre-amplifiers and comparing the results
with the laser physics model. Adjustments to the device

settings are made until the laser performance criteria are
met. Once settings are validated, the main amplifiers are
fired in a final countdown. Shot data is archived on each
of the countdowns.

The requirement to achieve efficient and reliable shot
operations using a minimum control room staff dictates a
highly reliable and automated control system. The ICCS
meets these requirements by providing distributed
computer controls throughout the facility to manage
operation of the 60,000 devices.

ENGINEERING PROCESSES
A wide range of engineering processes and procedures

have been implemented to ensure and maintain high
quality and reliability. A standardized architecture is
complemented by formal code design and engineering
review. Strict release planning and configuration
management ensure an on-time delivery of required
functionality to meet project schedules. Formal
integration of each release is conducted by the
development team to demonstrate new functionality and
provide an efficient environment to quickly correct any
defects. Formal offline testing by an independent test
team then verifies the software and associated database is
ready for on-line delivery to NIF. Offline testing also
specifically verifies all critical functions meet
requirements. Formal training is performed to instruct
control room operators on the new capabilities and obtain
feedback on usability issues.

Architecture
ICCS controls are based on a segmented, partitioned

and layered architecture that is data-driven, distributed
and object-oriented. Segmentation into distinct control
technologies reduces complexity by separating out safety
interlocks and common industrial controls from the laser
control system. This paper focuses on the laser control
system segment. System scaling is assured by partitioning
controls and software among a set of computers dedicated
to controlling a single bundle of 8 beams, which is the
unit-cell repeating structure of the NIF laser architecture.
Controls are then replicated to implement all 24 bundles
in NIF. Replication of software for the partitions is
primarily accomplished by copying the processes and
control database. Software layers divide control system
functionality into appropriate levels ranging from close to
the hardware or higher up to aggregate control of the
lower layers and achieve greater integration. Layering
leads to simpler and more maintainable code designs [1].

ICCS is developed using a combination of custom
software and commercial off the shelf (COTS)
technology, including open source technologies.

* This work performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

ludwigsen1@llnl.gov

Communications between applications is managed by
CORBA protocols. Ada and Java are the primary
languages used to develop the custom software, with
C/C++ used for some embedded controller applications.
IBM Rational, Ada Core Technology, and open source
supply interactive development environments (IDEs).
Research Systems International’s Interactive Data
Language is used for analysis of on-line data and images.
XML supports workflow models and application scripts.
Oracle databases manage the vast quantity of information
that is used, collected, and archived by the control system.

Another tactic from the architectural toolbox is the
collection of system-wide functions into servers.
Functions include application startup, monitoring, and
shutdown; alert and event monitoring and publication;
reservation control; status monitoring and publication;
and general database access. These are consolidated into
server applications because they tend to be tightly coupled
to the database. Rather than impact a large portion of the
control system, database schema and generation changes
can be accommodated more easily by modifying servers.

In the lowest layer, I/O control is managed by Front
End Processors (FEP) and embedded controllers where
true real-time control is needed. FEP software is divided
into a public interface and a private component,
respectively Device and Controller objects. Controller
code is customized for the equipment and provides
protocols handle register access and communications.
Software devices manage the data conversion between the
applicable engineering units and I/O data from one or
more controllers. Higher-level clients communicate with
the control points using CORBA interfaces. CORBA
specifications define public interface contracts for the
distributed control system, so these interfaces are held
under strict configuration management.

FEP control and status information is managed and
published to User Interfaces and other client applications
by Status and Control Supervisors (SCS). Director objects
are typically organized to mimic the modularity of laser
hardware in Line Replaceable Units, and they may also be
used to provide higher-level data processing capabilities.
Director objects have CORBA interfaces and contain one
or more Staff objects that manage data collection and
processing. Staff objects frequently add value to
information with condition flags for validity of the data
being observed, the health of the communications
connection, and other common attributes.

At the highest level of integration, shot sequencing and
coordination are managed by a separate set of Shot
Director and Collaboration Supervisor applications that
also use the Director-Staff architecture. The data driven
Shot Director application manages a software shot model
to coordinate major functions along with the interactions
between subsystems. Collaboration Supervisor

applications coordinate sequencing of the major functions
within an associated set of Shot Supervisors to control a
bundle. Shot Supervisor applications manage laser shot
activities on a subsystem basis by reading information
from the laser physics model, defining equipment settings
to be used, and configuring the equipment via Devices
and Directors [2].

Software objects are uniquely identified using a string-
based taxon naming convention that is easily understood
and can be expanded to differentiate unique control
points. Taxon identifiers are highly controlled because
many external processing codes use them to reference
data collected during shots, to provide device settings and
calibration updates and to generally access control system
information.

Since ICCS has been under development for over ten
years, some applications are already being migrated to
newer, cheaper or more efficient technology. Some Ada
code is being migrated to Java to take advantage of the
lower cost of IDEs and Java’s higher portability.
Automatic alignment and optics inspection image
acquisition applications are being changed from more
cumbersome XML scripts to use Java database-driven
sequences. This is being driven mainly by the need to
mediate access to common control points used in the
alignment and image capture processes [3]. Database
entry is migrating to a web–based form system from the
present Oracle SQLForms®. This will provide easier-to-
use data entry and verification that is operable on standard
web browsers. Other migrations are naturally driven by
hardware upgrades. The original analog imaging cameras
designed into NIF were upgraded to higher resolution
Firewire sensors to improve performance.

Requirements, Designs, and Reviews
One area that challenged the ICCS team was

requirements specification. Requirements for FEP
software, servers, and initial supervisory systems were
initially documented to get started. Supervisory
requirements continued to be specified after the laser
hardware and control system capabilities were initially
deployed and user feedback was obtained. Requirements
evolve as operability enhancements are discovered during
early use of the system. The ICCS architecture periodic
incremental development cycles allowed the control
system to adapt to these evolving requirements [Figure 1].

Well-designed abstractions in the object-oriented
framework are essential tools that simplify the design of
software components. Most new control applications will
fit into existing design patterns, either by extension or
aggregation. Occasionally, completely new designs are
developed to fit unique requirements.

A formal design review team critically reviews new
application designs against the established architecture
and existing requirements before approving code
development. Changes to the basic architecture can
disturb software in unintended ways, so the review
includes looking for impacts to the database, framework,
or critical interfaces. These reviews frequently result in
discovery of implied framework enhancements. New
requirements are also examined to determine if the
solution proposed is optimal. The review team includes
hardware engineers and operations representatives to
ensure that requirements are well understood.

Other peer reviews also help maintain the quality of
ICCS software. Any code module that undergoes
significant modification requires a formal change review
by a select team of software developers. This review may
also be held if a particularly complex code module is
affected. The review team includes developers familiar
with the subject area, developers from other areas and
members of the test team. A diverse review team ensures
consistency with the architecture and assists development
of appropriate verification tests.

All software changes are reviewed before integration by
at least one other developer in a Desk Check inspection
process that ensures:

• Specific code changes are correct
• Unit testing is performed
• Change documentation is complete and
• Configuration management followed.

Documented coding practices and procedures guide the
reviewers during inspections. Reviews also provide an
excellent forum to train new developers on the code base
and inculcate accepted standards and styles.

Configuration Management
Strict configuration management of the code base

ensures the product set is up-to-date and can be built
without errors. It also ensures that the size of a release is
manageable such that project schedules can be met. All

software changes, be they problem corrections or feature
enhancements, are authorized by the Software Change
Control Board (SCCB) before work is started. A database-
driven change tracking system maintains the inventory of
the proposed and authorized changes (called Software
Change Requests), as well as tracks the work status.
Additionally, changes in major interfaces, object
identifiers, or database schema are signed-off by permit to
ensure all affected parties incorporate the change.

The content and schedule of each release is planned by
management to conform to the expected commissioning
effort and shot plan. Four levels of software releases help
manage complexity, while minimizing response time to
address operational issues that may arise. Major releases
are scheduled approximately every twelve months to
deliver significant feature additions. Major releases are
also planned to introduce changes to the framework.
Minor releases delivered three or four times per year
include feature additions as well as software fixes. Service
packs occur monthly to deliver software fixes that must be
more coordinated. Small patches are scheduled as needed
to address urgent issues.

The amount of work assigned to each release is
continually monitored to determine need for schedule
revision or content reduction based on available
manpower, estimated workload and project deadlines.
Release progress is closely monitored to permit staff
reassignment whenever a particular area encounters
difficulty.

A dedicated configuration management (CM) team is
integral to a reliable release process. These specialists
maintain the code base across multiple environments,
including the challenges of mixed languages, multiple
development systems, and different target architectures.
The CM team has the skills and mandate to develop
automated tools that ensure all releases are up-to-date
with respect to changes made in interim releases such as
service packs or patches. They also roll back online data
and files to the development environment, where

Independent
Test Team

Operations
Team

Code
Dev.

Code
Review

Desk
Check

ICCS Test
Procedures

Operations
Procedures

Testbed
Installation

Facility
Installation OperationsOffline

Test
Online
Test

Development
Team

Requirements

Design
Review Integration

Software Change
Control Board

Software Change Requests

Independent
Test Team

Operations
Team

Code
Dev.

Code
Review

Desk
Check

ICCS Test
Procedures

Operations
Procedures

Testbed
Installation

Facility
Installation OperationsOffline

Test
Online
Test

Development
Team

Requirements

Design
Review Integration

Software Change
Control Board

Software Change Requests

Work Authorization Point

Figure 1. Software Development and Deployment Process

applicable, to allow release regression and mitigate
unexpected conflicts.

INTEGRATION AND TESTING
Quality control testing is performed by both the

development team and the test team to ensure reliability
of the deployed software. The code is unit tested by
developers as they make changes. Once coding is ready, a
period of integration testing brings all elements of the
release together and verifies reliability, confirms new
features are implemented properly, and ensures no
regressions have occurred. After completing the
integration phase, formal off-line testing is performed by
the test team to verify the release and database
configuration, and to confirm no errors were introduced
during the deployment process [4].

Integration testing is performed on the entire release
using a separate database instance to confirm that
database updates have been assembled correctly. Most
control points have been modeled by software emulators
so testing closely mimics actual device behavior. Selected
hardware systems have simulators in the test bed that
operate like the full size hardware. These capabilities
allow testing of the software release in its entirety,
including shot cycle emulations that run in real-time.
Daily reports of the issues identified are distributed to the
development staff so that errors can be quickly addressed.

The integration period includes several testing regimes.
Regression testing, both manual and automated, verifies
that unmodified portions of the release will perform
correctly when deployed. Software Change Request
verification evaluates whether all approved software
changes have been successfully incorporated into the
release. Shot testing verifies the shot model properly
coordinates shot activities. Mock experiments defined to
exercise the automated shot setup and sequences include
various beam destinations, laser configurations, power
levels, and pulse shapes.

Key software and database developers perform most
integration verification. The rest of the development staff,
while nominally working on the follow-on release, is on
call to quickly address any issues found. An “extreme
programming” work process is encouraged during
integration that allows defects to be fixed directly in the
release code base as they are found, thus allowing the
integration effort to continue. Complex defects found
during integration take priority over the follow-on release
except for urgent issues from the operations environment.

Formal testing is performed offline by an independent
formal test team. Formal offline testing includes at least
one real component of each type of control point used in
NIF to verify communication paths. Signal-based and
scale-model simulators are used where the use of real
hardware is impractical. Auxiliary laser facilities are
sometimes used to verify the software on actual NIF
hardware.

Verification of device controls involved in machine
protection functions is an important formal test activity.

These tests confirm that devices involved in protecting the
laser from potential damage are controlled during shot
cycles to prevent inadvertent operation, once set to the
shot configuration. Experiments designed for the final on-
line test are used to verify the software will support
operations when deployed to NIF.

An inventory of automated tests is being developed to
efficiently leverage the knowledge of the developers and
formal test team members [5]. These automated tests will
decrease time spent in manual testing, while assuring test
case coverage is maintained. It also allows expanded use
of limited testing resources by permitting tests to be run
unattended during the off-hours.

Quality Assurance
The Quality Assurance team reviews information

collected by the change tracking system to provide a
monthly quality metrics report. This report identifies
short-term spikes in defects as well as long-term trends.
The backlog of change requests is also tracked to identify
areas where developer resources may need to be re-
assigned when progress is slowing down. It is also used
by management to support requests for additional
development time or staff to meet the NIF’s operational
needs.

Team Composition
The development staff features a wide range of

experience. This includes GUI specialists, hardware
control engineers, language experts, database specialists,
and tool smiths. This mixture of skills and experience
provide synergy to improve results and productivity.

PROGRESS TO DATE
Over 85% of the estimated 1.8 million lines of code for

ICCS have been deployed to NIF for routine
commissioning and shot operations. Quality control
processes in place have been very effective, consistently
finding 90% of defects before the code was delivered.
NIF recently completed commissioning a full laser bay of
96 beams and is presently activating bundles in the second
laser bay [6]. ICCS is routinely used on hundreds of shots
and the control system performance easily meets the four-
hour shot sequence requirement.

A Precision Diagnostic System (PDS) is in routine use
to evaluate laser operating scenarios at the equivalent of
target chamber center. This system provides laser
diagnostic measurements for laser scientists and engineers
to characterize performance and improve the operating
models and procedures used by ICCS to perform shots.
PDS results have improved pulse generation techniques
that have already been incorporated.

FUTURE PLANS
The next area of development is the extension of ICCS

to support target shot operations for the National Ignition
Campaign. Automated control of target diagnostics,
alignment to target chamber center, cryogenic targets and

an advanced radiographic capability are in the early stages
of development.

Thirty types of target diagnostic instrument systems are
scheduled for the National Ignition Campaign. These
include hard and soft X-ray spectrometers and imagers,
optical diagnostics and neutron diagnostics. Many
diagnostics were developed and used during the NIF
Early Light campaign in 2003-2004. Information learned
from this work is being incorporated into target diagnostic
capability. This includes a re-factoring of the software in
this area to increase modularity and code reuse.

Cryogenic targets are key to ignition experiments
scheduled to begin in 2010. The on-line system will
control and characterize Deuterium-Tritium fuel ice layer
formation in ignition targets using cryogenic temperature
controls and X-ray image diagnostics. The ice formation
process is expected to take several hours, which will drive
changes to the shot control software for synchronizing the
shot cycle and cryogenic systems when the target is ready.

The Advanced Radiographic Capability (ARC) will
provide extremely short laser pulses on a few beam lines
for back-lighted diagnostics and fast igniter applications.
This requires some beams to be easily converted from
normal operation to ARC mode. Pulse injection for these
special beams will also need to be selectable.
Additionally, new alignment techniques will be needed.

SUMMARY
Rigorous application of software engineering practices

can deliver reliable large-scale control systems for
complex physics machines. Principles of architecture,
code design, configuration management, product
integration, and formal verification testing all contribute
to successful deployment of integrated products that meet
both customer expectations and aggressive project
schedules. Management practices guide the development
process at all times. Quality assurance provides
measurements that lead to timely corrective actions.

A well-defined and open architecture is essential to
efficient software development, long-term
maintainability, and consistent results. It simplifies code
development by reducing software complexity through
reusable designs, frameworks, and coding templates.

Code design must be managed to control complexity.
Reviews incorporated into the design process ensure
requirements are reasonable and the design will meet
requirements. Inspections included as a routine part of
development help verify the design has been implemented
correctly and also ensure accepted coding practices and
standards are used.

Strong configuration management is critical to success
as well. Incremental releases with active management and

quality controls can effectively mitigate the interrelated
challenges of technical risk, schedule pressure and
available manpower. A software change tracking system
greatly assists in this process.

Formal product integration helps achieve reliable
control system delivery. The integration effort should be
extensive and include verification of specific changes and
assurance that regressions have not occurred. Testing
should exercise software at the highest level of integration
to confirm that all code elements work together as
planned.

Both offline and online formal independent testing is
incorporated into the deployment process. The test team
should be familiar with common operator issues as well as
have knowledge of software development concerns. This
testing validates required functionality and critical control
execution. It can identify usability issues where software
performs functions correctly but is difficult for operators.

An experienced development staff with a wide range of
skills will improve productivity and results. A dedicated
configuration management team should build and confirm
software release content.

Finally, management and quality assurance practices
should augment the development process. These include
keeping the staff informed of the release schedule and its
progress. Ongoing review of data from the change
tracking system identifies issues and highlights trends that
may need increased attention.

REFERENCES
[1] R. Carey, et al, “Status of the Use of Large-Scale

CORBA-Distributed Software Framework for NIF
Controls”, ICALEPCS 2005, Geneva, Switzerland,
October 2005

[2] L. Lagin, et al, “Shot Automation for the National
Ignition Facility”, ICALEPCS 2005, Geneva,
Switzerland, October 2005

[3] K. Wilhelmsen, et al, “Automatic Alignment Systems
for the National Ignition Facility”, ICALEPCS 2007,
Knoxville, October 2007

[4] D. Casavant, et al, “Testing and Quality Assurance of
the Control System during NIF Commissioning”,
ICALEPCS 2003, Gyeongju, Korea, October 2003

[5] J. Zielinski, “NIF ICCS Testcontroller for Automated
and Manual Testing”, ICALEPCS 2007, Knoxville,
October 2007

[6] L. Lagin, et al, “Status of the NIF Integrated
Computer Control System”, Sixth IAEA-TM on
Control, Data Acquisition, and Remote Participation
for Fusion Research, Inuyama, Japan, June 2007

